Assessment of survival prediction models based on microarray data

نویسندگان

  • Martin Schumacher
  • Harald Binder
  • Thomas Gerds
چکیده

MOTIVATION In the process of developing risk prediction models, various steps of model building and model selection are involved. If this process is not adequately controlled, overfitting may result in serious overoptimism leading to potentially erroneous conclusions. METHODS For right censored time-to-event data, we estimate the prediction error for assessing the performance of a risk prediction model (Gerds and Schumacher, 2006; Graf et al., 1999). Furthermore, resampling methods are used to detect overfitting and resulting overoptimism and to adjust the estimates of prediction error (Gerds and Schumacher, 2007). RESULTS We show how and to what extent the methodology can be used in situations characterized by a large number of potential predictor variables where overfitting may be expected to be overwhelming. This is illustrated by estimating the prediction error of some recently proposed techniques for fitting a multivariate Cox regression model applied to the data of a prognostic study in patients with diffuse large-B-cell lymphoma (DLBCL). AVAILABILITY Resampling-based estimation of prediction error curves is implemented in an R package called pec available from the authors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎بینی بقای بیماران مبتلا به سرطان پستان با استفاده از دو مدل رگرسیون لجستیک و شبکه عصبی مصنوعی

  Background and Objectives : recent years, considerable attention has been paid to statistical models for classification of medical data according to various diseases and their outcomes. Artificial neural networks have been successfully used for pattern recognition and prediction since they are not based on prior assumptions in clinical studies. This study compared two statistical models, arti...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

Comparison of Artificial Neural Networks and Cox Regression Models in Prediction of Kidney Transplant Survival

Cox regression model serves as a statistical method for analyzing the survival data, which requires some options such as hazard proportionality. In recent decades, artificial neural network model has been increasingly applied to predict survival data. This research was conducted to compare Cox regression and artificial neural network models in prediction of kidney transplant survival. The prese...

متن کامل

مقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیش‌بینی بقای بیماران مبتلا به سرطان معده

Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gast...

متن کامل

The Iterative Bayesian Model Averaging Algorithm for Survival Analysis: an Improved Method for Gene Selection and Survival Analysis on Microarray Data

Survival analysis is a supervised learning technique that in the context of microarray data is most frequently used to identify genes whose expression levels are correlated with patient survival prognosis. Survival analysis is generally applied to diseased samples for the purpose of analyzing time to event, where the event can be any milestone of interest (e.g., metastases, relapse, or death). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 23 14  شماره 

صفحات  -

تاریخ انتشار 2007